Chaos in the square billiard with a modified reflection law.

نویسندگان

  • Gianluigi Del Magno
  • João Lopes Dias
  • Pedro Duarte
  • José Pedro Gaivão
  • Diogo Pinheiro
چکیده

The purpose of this paper is to study the dynamics of a square billiard with a non-standard reflection law such that the angle of reflection of the particle is a linear contraction of the angle of incidence. We present numerical and analytical arguments that the nonwandering set of this billiard decomposes into three invariant sets, a parabolic attractor, a chaotic attractor, and a set consisting of several horseshoes. This scenario implies the positivity of the topological entropy of the billiard, a property that is in sharp contrast with the integrability of the square billiard with the standard reflection law.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yakov G . Sinai , Abel Prize Laureate 2014

A dynamical billiard is an idealization of the game of billiard, but where the table can have shapes other than the rectangular and even be multidimensional. We use only one billiard ball, and the billiard may even have regions where the ball is kept out. Formally, a dynamical billiard is a dynamical system where a massless and point shaped particle moves inside a bounded region. The particle i...

متن کامل

Survival probability for open spherical billiards.

We study the survival probability for long times in an open spherical billiard, extending previous work on the circular billiard. We provide details of calculations regarding two billiard configurations, specifically a sphere with a circular hole and a sphere with a square hole. The constant terms of the long-time survival probability expansions have been derived analytically. Terms that vanish...

متن کامل

Chaotic billiards , by Nikolai Chernov and Roberto

Studies of the dynamical systems of billiard type (or simply billiards) form one of the most fascinating and notoriously difficult areas in the modern theory of dynamical systems. Billiards are visual and arise naturally in applications (primarily in classical mechanics, statistical mechanics, optics, acoustics, and quantum physics). For instance, the Boltzmann gas of elastically colliding ball...

متن کامل

A baker’s dozen of problems

Given a convex plane domain, the billiard ball map sends the incoming ray (the trajectory of the billiard ball) to the outgoing one: the law of reflection is “the angle of incidence equals the angle of reflection”. Consider two nested convex domains. Then one has two billiard ball maps, T1 and T2, acting on the oriented lines that intersect both domains. If the domains are bounded by confocal e...

متن کامل

Quantum Chaos: An Exploration of the Stadium Billiard Using Finite Differences

We investigate quantum chaos in chaotic billiards by modelling the square (non-chaotic) and the stadium (chaotic) billiards as 2D infinite square wells. We developed MATLAB code that uses grid points and the method of finite differences to numerically solve the Schrödinger equation for either case. We successfully obtained the “scar” structures in higher energy eigenfunctions for the stadium ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chaos

دوره 22 2  شماره 

صفحات  -

تاریخ انتشار 2012